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1. Introduction 
 

The dynamics of optical soliton molecules in 

optical fibers has been extensively studied during the 

past few decades [1-10]. There are several forms of 

nonlinear media where these solitons are studied. A 

recently reported nonlinear medium is the quadratic-

cubic (QC) type, that first appeared in 2011, where 

variational approach has laid down the parameter 

dynamics of the soliton [6]. Since its first appearance, 

few results have been reported with regards to QC 

nonlinearity. These include conservation laws, exact and 

analytical soliton solutions that are obtained by the 

application of traveling waves, semi-inverse variational 

principle, direct integration method and others [2-4, 8]. 

This paper will be addressing the perturbed nonlinear 

Schrödinger's equation (NLSE) (the governing 

equation), with QC nonlinearity where perturbation 

terms are all of Hamiltonian type. This does not destroy 

the integrability aspect of the perturbed version of 

NLSE. The method of undetermined coefficients will be 

implemented to extract these soliton solutions that are 

also supported by numerical schemes. The details appear 

in the following sections. 

 

1.1. Governing Model 

 

The governing resonant NLSE with perturbation 

terms that is studied in nonlinear optics is given in its 

dimensionless form as [2-4, 9, 10]:  

 

     2 2 2

1 2t xx x
x x

iq aq b q b q q i q q q q q        
  

 

                                                         (1) 

 

 In (1), ( , )q x t  represents the complex-valued wave 

profile with two independent variables x  and t   which 

represents spatial and temporal components respectively. On 

the left side of equation (1), the first term is the linear 

temporal evolution, while from the second term, a   is the 

coeffficient of group velocity dispersion (GVD). The two 

nonlinear terms are with 1b  and 2b  that are quadratic and 

cubic nonlinear terms respectively. On the right side of (1) 

are the perturbation terms. The coefficient of   is inter-

modal dispersion, while the coefficients of    and    

respectively are self-steepening term and nonlinear 

dispersion. All of these parameters , ja b  for 

1,2, ,j    and   are real-valued constants. The three 

terms on the right side of (1) constitute Hamiltonian 

perturbation terms. Equation (1) is therefore rendered 

integrable, since it passes the Painleve test of integrability. 

The following section will detail the derivation of soliton 

solutions to (1). 

 

2. Soliton Solutions 

 

In order to get started the following assumption is made 

towards the soliton solution structure to (1) [2-4]:  

 

                   
( , )( , ) ( , ) i x tq x t P x t e     (2) 

 

 where ( , )P x t  is the amplitude portion of the soliton. The 

phase component is  

 

                    0( , ) .x t x t        (3) 

where,  represents the soliton frequency,   is the wave 

number and 0   is the phase constant. Substituting (2) into 

(1) and equating real and imaginary parts leads to [2, 13]  
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   
2

2 3

1 2 2
0,

P
a b P b P a

x
   


      


                                                                                      

(4) 

 and  

    22 3 2 0.v a P                (5) 

 

The imaginary part equation yields, after setting the 

coefficients of the linearly independent functions to 

zero,  

 

               2v a                              (6)                                                  

  

 and  

3 2 0.                                 (7) 

 

This gives the speed of the soliton irrespective of 

the type of soliton searched. Also, (7) gives the 

constraint relation between the perturbation parameters. 

Equation (4) will now be analyzed in the next few 

subsections to locate bright, dark and singular solitons. 

 

2.1. Bright Solitons 

 

In order to obtain bright soliton solutions, the 

starting assumption is [2-4]  

 

 
( , ) ,

cosh
p

A
P x t

D 



                        (8) 

 where  

 

( )B x vt                                   (9) 

 

 and A  is the amplitude of the soliton, B  is its inverse 

width while D   is an additional parameter that is related 

to A  and B  and this connection will be revealed 

shortly. The value of the unknown parameter p  will 

also be disclosed from balancing principle applied to the 

equation for ( , ).P x t  Substituting (8) into (4) gives:  

 

   

 

 

 
 

 
 

2 2

21

1 2 3

2 2 2 2 2

2

2 1

cosh cosh cosh

( 1) 1
0

cosh cosh
.

p p p

p p

p p aB D b Ab A

D D D

a B p ap p D B

D D



  

  

 





 
  

  

    
 

 

                 

                                                                                    (10) 

 

 By the aid of balancing principle, equating the 

exponents 3 p   and 2p    gives  

 

   1.p                                          (11) 

 

Subsequently, setting the coefficients of the linearly 

independent functions in (10) to zero yields:  

 

 2 2 ,a B                              (12) 

 

 

2

2 2

2 1

3 2
,

9 2

aB
A

aB b b


 
                (13) 

 and  

 

 
1

2 2

2 1

2
.

9 2

b
D

aB b b


 
                (14) 

 The pair of relations (13) and (14) implies the restriction:  

 

 2 2

2 19 2 0aB b b                    (15) 

 for existence of these bright solitons. Hence, the bright            

1-soliton solution to (1) is:  

 

 
 0( , ) ,

cosh ( )

i x tA
q x t e

D B x vt

    


 
 (16) 

 

 where the parameter definitions and constraints are 

indicated.  

 

The following Fig.1 is the profile of a bright 1-soliton 

solution of the perturbed NLSE given by (1). Here the 

parameter values are  

 

1 20.5, 2.0, 0.25, 1.0, 1.5.a b b           

 

 
Fig. 1. Profile of a bright soliton 

 
2.2. Dark Solitons 

 

In this case the starting hypothesis is:  

 

 ( , ) tanh ,
p

P x t A B                  (17) 
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 where A and B are free parameters and  

 

( ),x v t                               (18) 

 

 with p  being the unknown parameter that needs to be 

determined by the aid of balancing principle. Upon 

substituting (17) into (4), the real part simplifies to:  

 

   

  

    

 

  

 

  

   

12

22

2 22 2 2

22

1

32

2

2 2 2 2

2 2

12 2 2

4 2 1 tanh

2 1 tanh

2 1 tanh

4 tanh

2 tanh

4 3

2 tanh

4 2 1 tanh 0.

p

p

p

p

p

p

p

p a p A A B

a p p A B

a p p A B A B

b B A B

B b A B

p a A B

B a A B

a A p p A B A B

 

 

 



 



    

 









  

  

   

 

  

 

   

   

 

  (19) 

 

Similarly, as in bright solitons, balancing principle 

yields the same value of p  as in (11). Next, setting the 

coefficients of linearly independent functions to zero 

leads to the following relations with the soliton 

parameters:  

 
1

2

,
3

b
A B

b 
   


                    (20) 

 

 
1

2

21

6

b

a b



 


                       (21) 

 
2 24a a                           (22) 

 

Thus, relation (21) introduces the constraint:  

 

 2 0.a b                           (23) 

 

Therefore, dark 1-soliton solution is given by:  

 

    0( , ) 1 tanh ,
i x t

q x t A x vt e
  


  

      

                                                                                    (24) 

 

 with the parameter definitions and restrictions in place.  

 

The following Figure-2 is the profile of a dark 1-

soliton solution of the perturbed NLSE given by (1). 

Here the parameter values are  

 

1 20.5, 3.0, 1.2, 1.0a b b        and 

1.5.    

 
 Fig. 2. Profile of a dark soliton 

 
2.3. Singular Solitons (Type-I) 

 

For singular solitons of the first kind the assumption is 

[2-4]:  

 

 
( , ) ,

sinh
p

A
P x t

D 



                         (25) 

 

and in this case A , B  and D are all free parameters with 

the unknown index p . Substituting (25) into (4) leads to  

 

   

    

2 2

21

1 2 3

2 2 2 2 2

2

2 1

1 1
,

p p p

p p

B p aDp A bAb

E E E

B ap a B ap D p

E E



  





   
  

    


  (26) 

 

Once again, 1p  as given by (11). Similarly, the 

coefficients of the linearly independent functions lead to the 

same expression for wave number as in (12). However, the 

free parameters are related as  

 

 

2

2 2

2 1

3 2

9 2

aB
A

B a b b
 

 
                  (27) 

 

 and  

 

1

23

b
D A

aB
                                     (28) 

2 2B a a      

 

 The pair (27) and (28) introduces the restriction:  
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 2 2

2 19 2 0.B a b b                             (29) 

 

 for existence of these singular solitons. Hence, the 

singular  1-soliton solution to (1) is:  

 

 
 0( , ) ,

sinh ( )

i x tA
q x t e

D B x vt

    


 
  (30) 

 

 for designated parameters. 

 

2.4. Singular Solitons (Type-II) 

 

For the second type of singular solitons, the starting 

asssumption is:  

 

 ( , ) coth ,
p

P x t A B                      (31) 

 

 where A  and B  are free parameters and   carries the 

same definition as in (18). Equation (4), by virtue of 

(31), reduces to:  

 

   

  

    

 

  

 

  

   

12

22

2 22 2 2

22

1

32

2

2 2 2 2

2 2

12 2 2

4 2 1 coth

2 1 coth

2 1 coth

4 coth

2 coth

4 3

2 coth

4 2 1 coth 0.

p

p

p

p

p

p

p

p ap A A B

a p p A B

a p p A B A B

b B A B

B b A B

p a A B

B a A B

aAp p A B A B

 

 

 



 



   

 









  

  

   

 

  

 

   

   

                                                                                    (32) 

 

The unknown exponent p  turns out to be the same 

as in (11). Finally, as in dark solitons, the parameters 

, ,A B   and   receive the same values as seen in 

(20) - (22) together with the same restriction as given by 

(23). Thus, finally, the second form of singular solitons 

is written as:  

 

    0( , ) 1 coth ,
i x t

q x t A x vt e
  


  

       

                                                       (33) 

 for the defined parameters. 

 

2.5. W- Shaped Soliton 

 
Here, the starting assumption is [9]:  

 

( , ) sechP x t                                 (34) 

Substituting ( , )P x t   from (34) into (4) gives  

   

  

    
   

32 2

2

22 2

1

2 2 2 2 2

2 2 2

2 sech

6 sech

6

sech 2 0.

a p b

a b

a a

a

     

     

       

     

   

  

   

   

        (35) 

 

Balancing principle again yields 1p  . The 

coefficients of linearly independent functions give the 

parameters as:  

1

2

,
3

b

b


 
 


                                   (36) 

 

  

 

2

2 1

2

9 2

9

b a b

b

   




   
 


                (37) 

 

 
1

2

,
3 a

b

b


 
 


                              (38) 

 

 
1

2

.
3

b

b



 

 
                                  (39) 

 

 These parameters pose the same constraint as (23). Thus, 

the  W   shaped soliton is finally written as:  

 

    0( , ) sech ( ) ,
i x t

q x t B x vt e
  

 
  

      (40) 

 

 where all parameters and constraints are clearly presented.  

 

1 20.25, 2.0, 2.3, 1.0, 0.9a b b         

and  1.35   . 

 
Fig. 3. Profile of a W-shaped soliton 
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3. Conclusions 

 

This paper secures bright, dark, singular and 

W  shaped soliton solutions to the perturbed NLSE 

with QC nonlinearity. The perturbation terms are all of 

Hamiltonian type. The existence criteria of these solitons 

are also given. The numerical simulation of these 

solitons support the analytical results. The method of 

undetermined coefficients was implemented to retrieve 

these soliton solutions from the model. This paper is a 

sequel to an earlier reported result where optical soliton 

solutions were obtained for the same model by traveling 

wave hypothesis [3]. The advantage of this scheme is 

that one can extract dark and W  shaped solitons 

which are not possible by traveling wave hypothesis. On 

the other hand, combo-soliton solutions are possible 

with traveling wave hypothesis which the current 

method fails to obtain. In conclusion, it is imperative to 

study any soliton model by the aid of as many 

integration schemes as possible. It is only then a 

complete spectrum of soliton solutions, along with 

necessary constraints, is recovered. 
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